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In these lectures, some of the basic ideas of effective field theories in particle physics
are presented. These ideas are applied to two situations of current interest: the
1/mQ expansion and its application to b and c systems, and chiral perturbation
theory and its application to the light mesons.

1 Effective Field Theories: Philosophy and Examples

1.1 Introduction

These lectures introduce the idea of effective field theories (EFT’s) as applied
to particle physics, and illustrate their application to two areas of current
phenomenological interest: heavy-quark effective theory (HQET) and its ap-
plication to b and c systems, and chiral perturbation theory (χPT)and its
application to the light mesons. There is an extensive literature on both these
subjects, and I will not be able to come close to covering all the important
results in the fields. Rather, I want to focus on the more general aspects of
the EFT approach, and stress the ways in which it allows one to exploit a few
powerful physical concepts: symmetries, power counting and scaling.

The idea behind an effective field theory is very simple and intuitive: it is
simplest to describe physics at a given scale in terms of the relevant degrees
of freedom at that scale. Thus, if one is interested in fluid mechanics, it isn’t
reasonable to attempt to solve for the behaviour of the individual atoms making
up the fluid. Similarly, it is not necessary to know about the t quark, let alone
M -theory, to do atomic physics to any reasonable level of accuracy. In general,
if one is interested in a process typified by some energy scale E, the physics can
be described only in terms of the degrees of freedom and interactions relevant
at that scale. The effects of new degrees of freedom at larger energy scales Λi

may then be systematically taken into account by modifying the interactions
of the low-energy degrees of freedom accordingly, as an expansion in powers of

E/Λi.

The practical benefit of this approach is that choosing the degrees of free-
dom appropriate to the problem of interest simplifies your life enormously.

1



� � �� � ��
��
��	



��

Figure 1: At energies � mW , W exchange may be effectively treated as a series of four-fermi
interactions.

Hard calculations become easy, and impossible calculations become doable.
The essential simplification arises because the various distance scales in a prob-
lem are automatically disentangled in this approach before the calculation is
performed, at the level of the Lagrangian.

Example: Four-Fermi Theory

The most familiar example of an effective field theory is four-fermi theory.
Consider the Standard Model at energies much less than mW . At these ener-
gies the W boson cannot propagate, and according to the philosophy above,
should not be included as a degree of freedom in the theory. Rather, it should
be removed from the theory (or “integrated out”), and its effects taken into
account by modifying the interactions of the relevant degrees of freedom. At
tree level (we will discuss loops shortly), it is easy to see how to do this. For
example, for muon decay at leading order in the weak interactions, the relevant
matrix element is given by the diagram in Fig. 1

iM =
ie2

8 sin2 θW

1

q2 −m2
W

ν̄µγ
α(1 − γ5)µēγα(1 − γ5)νe

= − ie2

8 sin2 θWm2
W

ν̄µγ
α(1 − γ5)µēγα(1 − γ5)νe

×
[

1 +
q2

m2
W

+
q4

m4
W

+ . . .

]

, (1)

where q is the momentum transfer through the W .
For q2 � m2

W (which is certainly the situation for muon decay) this am-
plitude may be reproduced to arbitrary accuracy by a series of local operators
in an effective Lagrangian,

Leff =
c1
m2

W

ν̄µγ
α(1 − γ5)µēγα(1 − γ5)νe
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+
c2
m4

W

ν̄µ

(

iD − i
←
D
)2

γα(1 − γ5)µēγα(1 − γ5)νe + . . . (2)

where the ci’s are dimensionless, and the ellipses denote additional operators
of increasing dimension, suppressed by the appropriate power of 1/m2

W . The
leading operator is just the usual four-fermi theory of weak interactions, but
by keeping a finite number of additional operators this may be made accurate
to any fixed order in q2/m2

W .
Thus, we have gone from a fairly simple renormalizable field theory to a

nonrenormalizable theory with, in principle, an infinite number of terms in
the Lagrangian. Furthermore, while the original theory was consistent for all
momenta, the effective theory only makes sense for momenta less than mW .
This does not appear to be progress. Nevertheless, an effective Lagrangian
such as (2) is actually much simpler to work with at low energies than the full
theory. There are a number of reasons for this.

• Calculational simplicity: Loop integrals quickly become intractable when
there are a number of scales in the problem. In the EFT the scale mW

only appears trivially, in the coefficients of nonrenormalizable operators.
This simplifies perturbative calculations tremendously.a

• Improved convergence of perturbation theory: Perturbation theory is
notoriously poorly behaved in theories with widely disparate scales. For
example, let us instead consider inclusive nonleptonic b quark decay,

b→ cūd+ anything.

Although this process is calculable and free of infrared divergences, at n
loops the decay rate contains terms proportional to

(

αs(mb)

π

)n

logn m
2
W

m2
b

(3)

due to the presence of two scales, mb and mW , in the loop integral.
Even though αs(mb) is small, the large logarithm can compensate for
this, and spoil the convergence of perturbation theory. This result is
generic: perturbation theory for problems with different energy scales
contains factors of the logarithm of the energy scales. If these are widely
separated, perturbation theory will break down, even at scales where the
theory is weakly coupled.

aA similar comment holds for nonperturbative lattice calculations: simulating the full theory
requires lattice spacings on the order of 1/mW , whereas the effective theory may be simulated
with a much larger lattice spacing, of the order of 1/q.
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In an EFT, the scale mW does not enter into loop integrals, and no such
logarithms arise in matrix elements. Instead, a loop integral proportional
to αs logmW /mb in the full theory is proportional to αs log µ/mb in the
EFT, where µ is either the cutoff or the renormalization scale, depend-
ing on whether a cutoff or dimensional regularization is used. Since the
renormalization scale is arbitrary, choosing µ ∼ mb minimizes the log-
arithms in perturbation theory. More precisely, as we will discuss, one
starts with a renormalization scale µ ∼ mW , and then uses the renormal-
ization group equations to lower this to µ ∼ mb. The renormalization
group equation sums the series of large logarithms (3) to all orders, in-
corporating it into the coupling constants of the EFT.

• Dimensional analysis: Dimensional analysis can be a powerful tool to ex-
tract physical information with a minimal amount of work. In four-fermi
theory, for example, since the leading four-fermi operator is dimension
six, the effects of the weak interactions manifestly scale like p2/m2

W ,
where p is the typical momentum scale in the problem. We will see less
trivial examples of the power of dimensional analysis a number of times
in these lectures.

• Manifest symmetries: Since the weak interactions are parity violating,
parity is not even an approximate symmetry of the electroweak La-
grangian. Nonetheless, at low energies parity is approximately conserved.
In the EFT, this is manifest: parity is an exact symmetry of all operators
with dimension less than six. By dimensional analysis, this immediately
tells us that parity violating effects are suppressed at low energies by
p2/m2

W . By contrast, in the full theory parity is violated in the renor-
malizable interactions, and the scaling of parity violating effects is not
manifest. Once again, this is a generic result. In an EFT, approximate
symmetries at low energies are exact symmetries of the theory at leading
order. Symmetry breaking terms suppressed by powers of p2/Λ2 (where
Λ is the scale of new physics) arise from nonrenormalizable operators,
and the size of such effects is just given by dimensional analysis. This
greatly simplifies the analysis of approximate symmetries and symmetry
breaking in the theory.

Example: Why is the Sky Blue?

I will close this section with a nice example of the power of dimensional analysis
which I learned from Refs. 1,2: the EFT description of Rayleigh scattering,
which explains why the sky is blue. Consider the scattering of low energy light
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off neutral atoms. To analyze this system from an effective field theory, we
need to identify the scales and symmetries of the problem. Identifying the
relevant scales will determine the power counting for the problem, while the
symmetries will constrain the operators we include in the EFT.

The symmetries of the problem are the obvious ones: Lorentz and gauge
invariance. There are a number of relevant scales - the photon energy Eγ , the
excitation energy of the atom ∆E, the size of the atom r0 and the mass m.
These scales are well separated, with the hierarchy

Eγ � ∆E � r−1
0 � m. (4)

Given the Eγ � m, there is effectively no recoil, so the four-velocity vµ of
the atom is conserved (we will see more of this in the next lecture). We will
describe the atom by a field ϕ. At low energies, the atom is nonrelativistic;
thus it should be described by a nonrelativistic Lagrangian

L = ϕ†
(

i∂ · v − ∂2

2m

)

ϕ+ Lint (5)

(in the rest frame, where vµ = (1,~0), this is just E − p2/2m).
The interaction Lagrangian contains, in principle, an infinite number of

terms, restricted only by gauge and Lorentz invariance:

Lint = c1ϕ
†ϕFµνF

µν + c2ϕ
†ϕvαFαµvβF

βµ + c3ϕ
†ϕ(vα∂α)FµνF

µν + . . . . (6)

To organize these in terms of importance, we need to do some dimensional
analysis. The mass dimensions of the various components of L are

[ϕ] =
3

2
, [Fµν ] = 2, [∂µ] = 1 (7)

and thus we have
[c1] = [c2] = −3, [c3] = −4, . . . . (8)

Since derivatives in the effective theory pick up factors of Eγ , the typical
momentum scale in the problem, the effects of the c3 operator are suppressed
by

Eγ

∆E

(since ∆E is the next energy scale in the problem) relative to c1 and c2. Thus,
at low energies we need only keep the first two terms in Lint, and we expect
corrections to these results of order Eγ/∆E. Finally, since at low energies no
internal structure of the atoms can be probed, the only scale which c1 and c2
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Figure 2: In the EFT, photon-atom scattering occurs through contact interactions.

can be sensitive to is ro, the size of the atoms, and therefore by dimension
analysis

c1, c2 ∼ r30 . (9)

The effective interaction is therefore

Lint = r30
[

a1ϕ
†ϕFµνF

µν + a2ϕ
†ϕvαFαµvβF

βµ
]

+O(Eγ/∆E) (10)

where a1 and a2 are unknown coefficients of order 1.

Now let us consider elastic photon-atom scattering in this theory. At tree
level, it occurs through the contact diagram in Fig. 2. If the energy of the
photon is ω, the amplitude is proportional to

r30ω
2

(since there are two derivatives in both terms in Lint). Squaring this up to
give the cross section (since phase space is dimensionless), we find

σ ∼ r60ω
4. (11)

This is Rayleigh’s famous ω4 result for scattering, and explains why the sky is
blue: blue light scatters more strongly than red. Conversely, sunsets are red
since the higher frequencies are scattered away from the forward direction.

To calculate a1 and a2 would require more work (this is known as “match-
ing”, and will be the subject of much discussion in these lectures), but the
amusing result of this example is that Rayleigh’s ω4 law may be obtained with
so little work, simply as a consequence of gauge invariance and power counting.

1.2 Renormalizability vs. Power Counting

Since an EFT contains an infinite number of operators of arbitrarily high di-
mension, it is clearly not renormalizable. Nonrenormalizable theories were once
held in low regard because of their alleged lack of predictive power. However,
in an EFT obtained after integrating out physics at a scale M , one retains
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Figure 3: Divergent graphs in ϕ5 (+ counterterms) theory. The circle denotes the ϕ5

interaction; the box denotes the ϕ6 interaction which is required as a counterterm.

predictive power order by order in p/M . To illustrate this, let us consider
adding a nonrenormalizable term to ϕ4 theory,

L =
1

2
∂µϕ∂

µϕ− µ2

2
ϕ2 − λ1ϕ

4 − λ2ϕ
5. (12)

The usual argument about the importance of renormalizability arises from
simply considering the divergences encountered in such a theory. For example,
the graph in Fig. 3 (a) is divergent, proportional to ϕ6 log Λ, where Λ is a UV
cutoff. To absorb this divergence, we must introduce a ϕ6 counterterm into the
theory. Since this is a new parameter in the theory, we have a new coupling
constant which must be fixed from experiment. But now graphs such as Fig. 3
(b) and (c) arise, proportional to ϕ7 log Λ and ϕ8 log Λ respectively, forcing us
to introduce ϕ7 and ϕ8 counterterms, ad infinitum. Thus, the argument runs,
a nonrenormalizable field theory has no predictive power since it requires an
infinite number of coupling constants, all of which must be fixed by experiment.

While this argument is, strictly speaking, correct, let’s look at it from the
point of view of dimensional analysis. The nonrenormalizable part of the EFT
has the form

Lint ∼
a1

M
ϕ5 +

a2

M2
ϕ6 + . . . (13)

where M is some mass scale chosen such that the ai’s are dimensionless (and
generically of order one, as would be the case if there were new physics at the
scale M). At low energies, p � M , the effects of higher dimension operators
will be suppressed by powers of p/M , just by dimensional analysis, and are
thus, in a technical sense we shall define in a moment, “irrelevant.” The higher
the dimension of the operator, the smaller its contribution at low energies, at
least at tree level. Now let’s look at some loop graphs.

Regulating the theory with a cutoff Λ, the graph in Fig. 4 (a) simply
renormalizes the ϕ5 coupling λ2,

(a) ∼ 1

M
ϕ5 log Λ + finite. (14)
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Figure 4: More divergent graphs in ϕ5 theory.

Since λ2 was a free parameter in the first place, this does not reduce the pre-
dictive power of the theory. Fig. 4 (b) contains both quadratic and logarithmic
divergences,

(b) ∼ Λ2

M
ϕ3 +

1

M
ϕ∂µϕ∂

µϕ log Λ + finite. (15)

These renormalize additional operators with dimension ≤ 5. This was to be
expected. Even in a renormalizable theory, all operators with dimension 4 or
less and consistent with the symmetries are required as counterterms, even
if they were not included in the Lagrangian originally. In general, if one is
interested in working to order 1/Mn, all operators permitted by the symmetries
with dimension n+4 or less must be included. A renormalizable field theory is
just the n = 0 case. So although the operators in Eq. (15) were not included in
Eq. (12), they should have been, since they are permitted by the symmetries
of the theory, and their coefficients are renormalized by this graph.

Finally, the troublesome graph in Fig. 4 (c) requires a ϕ6 counterterm, but
the graph is of order 1/M2. To the order we are working, this graph should
be neglected, since we are not consistently including effects of O(1/M2). If
we wished to work to this order, we would have to include all operators of
dimension ≤ 6, and once again there would be enough counterterms to absorb
all the UV divergences in the theory. As long as we work consistently to a given
order in 1/M , only a finite number of operators are required as counterterms
in the EFT; thus, we have predictive power. We have traded the somewhat
artificial concept of renormalizability for the more physical concept of power
counting.

As the dimension of operators we include increases, there will be more and
more operators in the EFT, giving it more and more free parameters. This is
not necessarily a problem. If the full theory is known, these coefficients may
all be computed in terms of the parameters of the full theory. This was done
at tree level in the four-fermi example, and will be done to one loop in the
next example. On the other hand, if the full theory is not known, or is not
perturbative, this indeed limits the predictive power of the theory to a given
order p/M . We will see an example of this in the third lecture, when we study
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chiral perturbation theory.
Note that this hierarchy of scales really “explains” renormalizability in the

first place.3 A general Lagrangian may be divided into terms with dimension
D < 4, D = 4 and D > 4,

L = Ld<4 + Ld=4 + Ld>4. (16)

In a weakly-coupled theory, terms with d < 4 are known as “relevant” operators
- they become more important at lower scales. Particle masses are an example
of relevant operators. Terms with d > 4 are called “irrelevant.” They become
less important at low energies, being suppressed by powers of momentum over
some mass scale (just by dimensional analysis). An example is a four-fermi
operator. Terms with d = 4 are called “marginal” - their importance doesn’t
change as the scale is changed. Note that these classifications may be modified
by quantum effects. In a weakly interacting theory, quantum corrections push
a marginal operator into the relevant or irrelevant side. For example, gauge
couplings are marginal by power counting, but in QCD radiative corrections
make the gauge coupling relevant, becoming more important at low energies. In
a strongly interacting theory, more dramatic changes can occur - for example,
irrelevant operators may be strongly enhanced and made relevant.

Thus, any effective theory will look renormalizable at low energies if there
is a large hierarchy of scales. The irrelevant operators give small contributions
and may be neglected, and all that is left are the renormalizable terms.

Example: QED With a Heavy Scalar

At this stage, let us illustrate some of these ideas with a concrete example,
QED with a Yukawa coupling to a heavy scalar field:

L = −1

4
FµνF

µν + ψ̄(iD/−me)ψ +
1

2
∂µϕ∂

µϕ− M2

2
ϕ2 − gψ̄ψϕ. (17)

Suppose we are interested in precision measurements of the electron-photon
coupling at low momentum

p ∼ me �M. (18)

Then we can calculate the effects of the heavy scalar in two ways.

Full Theory Approach: In the full theory, the result is given by the graph
in Fig. 5 (a) (as well as the wave function graphs). This looks innocuous
enough, but if we are really interested in the full dependence of the result on p
and me (to leading order in p/M and me/M) the results is rather complicated.
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Figure 5: Diagrams contributing to photon-fermion coupling in a theory with a heavy scalar.
(a) full theory, (b-d) effective theory.

Straightforwardly evaluating the Feynman integrals results in a several page
expression. The graph is complicated because of the presence of several mass
scales in the loop integrals. Expanding the result in powers of 1/M (again, a
nontrivial task given the complicated functional dependence) one eventually
finds at leading order

iM = − meg
2

16π2M2
qνσ

µν

[

−1 + log
m2

e

M2
+ 2

√

4m2
e

q2
− 1 tan−1

√

4m2
e

q2
− 1

]

−1

3

g2

16π2M2

[

q/qν − q2γµ
]

[

−5

6
+ log

m2
e

M2
− 4m2

e

q2

+2

(

1 +
2m2

e

q2

)

√

4m2
e

q2
− 1 tan−1

√

4m2
e

q2
− 1

]

+O(1/M4) (19)

Effective Field Theory Approach: Much of the complication of the full
theory calculation is irrelevant, because physics at low energies is insensitive to
the form of the loop graph at p2 ∼M2. The same result may be obtained much
more simply in an EFT. For p,me � M , the ϕ field is not a relevant degree
of freedom and should be integrated out of the theory. The effective theory
contains only electrons and photons, with the effects of virtual ϕ exchange
included through a series of nonrenormalizable operators Oi:

Left = −1

4
FµνF

µν + ψ̄ (iD/−me)ψ +
∑

i

ciOi (20)

where the ci’s are determined by demanding that the EFT reproduce the results
of the full theory order by order in perturbation theory and p/M . (No new
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operators are introduced with d ≤ 4, since the QED Lagrangian contains all
operators of dimension ≤ 4 consistent with gauge invariance.)

Let’s focus on the dimension six operators, scaling like 1/M2. At tree
level, the matching is easy. Integrating out the heavy scalar at tree level leads
to the four-fermi operator

O1 =
1

M2
ψ̄ψψ̄ψ (21)

shown in Fig. 5(b), with coefficient

c1 =
1

2
g2 +O(α). (22)

Now, let’s look at the effect of this operator on the eeγ coupling. The obvious
difference between the full and effective theories is that the graph in Fig. 5(c) is
divergent, whereas the full theory result is convergent. However, this difference
is a short-distance effect which we will absorb into the coupling constants of
the low-energy theory. More importantly, the EFT gets the physics right at
low loop momenta. Regulating the EFT in a convenient scheme, dimensional
regularization in 4 − ε dimensions, we find after perhaps a page of work,

iM = − m2
eg

2

16π2M2
qνσ

µν

[

−∆ + log
m2

e

µ2
+ 2

√

4m2
e

q2
− 1 tan−1

√

4m2
e

q2
− 1

]

−1

3

g2

16π2M2

[

q/qν − q2γµ
]

[

−∆ + log
m2

e

µ2
− 5

3

−4m2
e

q2
+ 2

(

1 +
2m2

e

q2

)

√

4m2
e

q2
− 1 tan−1

√

4m2
e

q2
− 1

]

(23)

where

∆ ≡ 2

ε
+ log 4π − γE (24)

is the usual divergence arising in dimensional regularization.

Comparing this result with the full theory result, Eq. (19), we see that the
EFT has correctly reproduced the nonanalytic dependence on me and q, with
significantly less effort. This is no accident, of course. Nonanalytic dependence
on momenta and masses arises from physics at that scale. Since the EFT gets
the physics below the scaleM correct, all nonanalytic dependence on scales less
than M is correctly reproduced. The only difference between the two results is
analytic in the external momenta, and can be taken into account in the EFT
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by adding the local dimension six operators shown in Fig. 5(d),

c2(µ)
me

M2
ψ̄σµνFµνψ (electron magnetic moment operator)

c3(µ)
1

M2
ψ̄∂µF

µνγνψ (Darwin term) (25)

where

c2(µ) = − g2

32π2

[

1 + log
M2

µ2
− ∆

]

c3(µ) = − g2

48π2

[

5

6
− log

M2

µ2
+ ∆

]

. (26)

(The terms containing ∆ are usually dropped, with MS being implicit). Note
that had the nonanalytic terms not been correctly reproduced, we would have
been stymied, since these effects cannot be reproduced by local operators.
This would have been a sign that we were working in the wrong effective
theory. Note also that the extra ultraviolet divergences in the EFT introduce
no problems. The divergences are just absorbed into the matching conditions
for c2 and c3.

This example illustrates the generalization of the matching procedure al-
ready encountered at tree-level to loop graphs. The procedure is generic: cal-
culate an amplitude in the full and effective theories, then add the appropriate
operators to the EFT so that it reproduces the scattering amplitudes in the
full theory, order by order in the ratio of scales. As long as you are working in
the correct EFT, the nonanalytic terms are guaranteed to cancel, so only local
operators are required.b

Comments:

• The factors of logM/me in the full theory become factors of logµ/me

in the matrix elements in the effective theory, along with corresponding
factors of logM/µ in the coefficient functions c2(µ) and c3(µ), where µ is
the arbitrary scale introduced in MS. Thus, µ is effectively a factorization
scale, splitting the high energy physics which enters as parameters in the
EFT from low energy physics, which enters through matrix elements.
Furthermore, a finite log in the full theory (which is hard to calculate)
has been replaced in the EFT by a logarithm related to the divergent
part of the graph, which is easy to calculate.

bIn non-relativistic EFT’s (useful for studying charmonium and positronium, among other
things), Lorentz invariance is broken, and nonlocal operators corresponding to instantaneous
potentials are permitted4.
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• The renormalization prescription (in this case, dimensional regularization
with MS) is part of the definition of the EFT. If we were to switch to
another scheme, such as a cutoff, the matching conditions (26) would
have to be modified accordingly.

• In the EFT, the M dependence of amplitudes is trivial - it only arises
from the coefficient functions. Loop integrals never introduce additional
M dependence. In particular, there can be no large logarithms log p/M
in the EFT - as noted above, these become factors of log p/µ. This
simplifies the renormalization group equations considerably.

• In practice, one never calculates matching conditions at an arbitrary ex-
ternal momentum and keeping the full p/me dependence, as in this exam-
ple. Since the nonanalytic infrared dependence cancels in the matching
conditions, the matching conditions may instead be calculated at any
convenient kinematic point. In particular, once the leading factors of q
have been pulled out of the integral, one can set q = 0 everywhere else.
In general, amplitudes will be infrared divergent, but the divergences will
cancel in the matching. By the same token, one can match in QCD at
µ � ΛQCD using free quarks and gluons as external states, rather than
hadrons. The fact that this description is not correct in the infrared
cancels in the matching conditions.

1.3 Equations of Motion

When working in an EFT one typically has a large number of nonrenormal-
izable operators to include, particularly if working beyond leading order. A
subtle point which is not always appreciated is that it is possible to use the
equations of motion to simplify the operator basis.5,6. For example, an operator
like

1

M
ψ̄ (iD/−m)2 ψ (27)

vanishes by the equations of motion, so can obviously be neglected at tree level.
What is not so obvious is that it can be neglected in loop graphs as well, even
though the operator will then act on virtual particles which aren’t on shell. To
show this, recall that according to the LSZ reduction formula, one is always
free to perform a nonlinear field redefinition

ψ → cψ + [anything] (28)

for any field ψ in the theory. Provided that the normalization of the new
field is chosen so that it has a correctly normalized vacuum-to-one-particle
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matrix element, this redefinition will leave S-matrix elements unchanged. The
advantage of this freedom is that all operators which vanish by the equations

of motion may be eliminated by an appropriately chosen field redefinition.

In a renormalizable field theory, one doesn’t usually perform nonlinear
field redefinitions. For example, taking a free field theory with a scalar field of
mass µ and performing the field redefinition

ϕ→ ϕ+
1

2
gϕ2 (29)

gives the following complicated-looking Lagrangian,

L =
1

2
(∂µϕ)

2 − 1

2
µ2ϕ2 + g∂µϕ∂

µϕ

+
1

2
g2∂µϕ∂

µϕϕ2 − 1

2
µ2gϕ3 − µ2

8
g2ϕ4. (30)

This looks awful, but if you calculate with it you will find that all scattering
amplitudes vanish, since it’s just free field theory in disguise. However, in an
EFT we already are including all possible operators, so such a field redefinition
doesn’t make things more complicated.

Consider now a theory with an operator which vanishes by the equations
of motion,

L = ψ̄(iD/−m)ψ +
a

Λ
ψ̄(iD/−m)2ψ. (31)

Under the field redefinition

ψ′ = ψ +
a

2Λ
(iD/−m)ψ (32)

this becomes

L = ψ̄′(iD/−m)ψ′. (33)

Since the two theories are guaranteed to give the same S-matrix elements,
and the only difference is the term vanishing by the equations of motion, this
term may clearly be neglected, as advertised. You should be able to convince
yourself that a similar argument holds for any operator which vanishes by the
equations of motion.

We are thus free to use the equations of motion in an EFT as opera-

tor statements. This changes off-shell amplitudes, but physical results like
S-matrix elements are left unchanged. Thus, we don’t need to include the
operator

ψ̄D2ψψ̄ψ; (34)
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since D2ψ = m2ψ, this is included in the operator ψ̄ψψ̄ψ. As another example,
in the previous case of QED with a heavy scalar, the equation of motion for
the photon field is

∂µF
µν = eψ̄γνψ. (35)

We can therefore trade the Darwin term for a four-fermi interaction

ψ̄∂µF
µνγνψ → eψ̄γµψψ̄γ

µψ. (36)

As discussed in 6, the equations of motion are automatically implemented if
one always uses on-shell external states when calculating matching conditions.

1.4 Scaling and the Renormalization Group

As they stand, neither Eq. (19) nor Eq. (23) is well-suited for perturbative
calculations. The problem is the factor of g2 logM2/m2

e. If the ratio M2/m2
e

is large, such terms can invalidate perturbation theory.
In the EFT this large logarithm is split into two pieces via the arbitrary

renormalization scale. The coefficient functions c2(µ) and c3(µ) contain a fac-
tor of logM2/µ2, while the matrix element (23) has a factor of logµ2/m2

e.
Choosing µ ∼ mW makes perturbation theory well behaved for the match-
ing conditions, but poorly behaved for calculations in the low-energy theory,
whereas choosing µ ∼ me reverses the situation. Thus, neither situation gives
a good perturbative expansion. Instead, we would like to be able to choose
µ ∼ M to calculate the matching conditions reliably, and then lower µ to
me so that we can calculate reliably in the EFT. This is exactly what the
renormalization group equations allow us to do.

As a simpler example, let us forget QCD for a moment and return to the
operator

O = µ̄γµ(1 − γ5)νµūγµ(1 − γ5)d, (37)

which is relevant for charged-current neutrino hadron scattering. We write the
effective weak Hamiltonian as a power series in the QED coupling α ≡ e2/4π:

HW =
c(mW , µ)

m2
W

O(µ) + . . . , (38)

where O(µ) denotes the operator renormalized at the scale µ (I have included
the explicit mW dependence in c(µ) to stress that the coefficient function
depends on mW , but not the external momentum).

Now consider higher-order QED corrections to the matrix element of HW .
There will be corrections both to the matching conditions for c(mW , µ) and to
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Figure 6: Graph contributing to the anomalous dimension of O(µ).

the matrix element. At one loop, the decay amplitude will be proportional to

c(mW , µ)

[

1 − γ0
α(µ)

4π
log

µ

m̂
+ . . .

]

(39)

where γ0 = −4 arises from the diagram in Fig. 6 (this is the only diagram with
a large logarithm), the dots denote terms not enhanced by the large logarithm
and m̂ is a fictitious photon mass required to render the result infrared finite.

Now consider changing µ by an infinitesimal amount. Since the result is
µ independent, it is easy to show that c(mW , µ) will satisfy the differential
equation

µ
d

dµ
c(mW , µ) = γ0

α(µ)

4π
c(mW , µ) (40)

where d/dµ is the total derivative, including the change in the coupling e with
respect to µ:

µ
d

dµ
= µ

∂

∂µ
+ β(e)

∂

∂e

β(e) = µ
de

dµ
≡ β0

e3

16π2
+ . . . (41)

and β0 = 4
3 . The quantity γ0

α(µ)
4π is known as the anomalous dimension of the

operator O. The solution to the RGE is

c(mW , µ) =

[

α(mW )

α(µ)

]− γ0
2β0

c(mW ,mW ). (42)

Expanding this out gives

c(mW , µ) =

(

1 − α(µ)

4π
γ0 log

mW

µ
+
α(µ)2

32π2
γ0(γ0 + 2β0) log2 mW

µ

+ . . .

)

c(mW ,mW ). (43)
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Figure 7: Scaling in a theory with multiple scales.

Since c(mW ,mW ) has no large logs, we see that the complete series of lead-
ing logs has been summed by the RGE and put into the coefficient function
c(mW , µ).

The same approach can be used to sum leading logs in QCD, where the β
function is

β(g) ≡ µ
dg

dµ
= −

(

11 − 2

3
Nf

)

g3

16π2
(44)

forNf light flavours. In general, however, the RG equations will be complicated
by operator mixing, and the equations will be a set of matrix equations for the
various couplings ci(M,µ) in the theory.

The combination of matching and the renormalization group gives a com-
plete prescription for summing large logarithms in a theory with a number
of distinct scales, as illustrated in Fig. 7. One begins at a high scale, where
the full theory is known. One then runs down with the renormalization group
equations until reaching a threshold (usually a particle mass) at µ = m1, and
then matches onto a new EFT valid below µ = m1 (usually by integrating
the particle out of the theory). The RG equations in the new EFT are then
used to lower µ to the next threshold at µ = m2, and so on. Finally, at µ of
the order of the typical external momentum in the problem, matrix elements
are calculated. At each stage the renormalization scale µ is lowered, mov-
ing physics above that scale into the coefficients of the effective Lagrangian.
Matching at tree level and solving the one-loop RGE resums leading logs of
the form αn

s logn p/mi; matching at one loop and running at two loops resums
subleading logs αn+1

s logn p/mi, and so forth.

Since QCD is strongly interacting at low energies, one typically cannot cal-
culate matrix elements perturbatively. Nevertheless, this procedure correctly
takes into account the calculable effects of gluons with large loop momenta,
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Figure 8: The wrong way to calculate B̄ → Deν̄e.

where the theory is still perturbative. Such effects are particularly important in
theories where the EFT has additional symmetries at low energies which may
be used to relate different matrix elements, since they contribute the leading
symmetry-breaking effects due to virtual particles at high energies. We will
see an example of this in the next section.

2 The 1/mQ Expansion for Heavy Quarks

In this section we will put some of the ideas of the previous section to work
in a phenomenologically important situation. Over the past few years, there
has been a great deal of progress in understanding the dynamics of B and D
mesons in the limit that the b and c quark masses are much greater than the
typical QCD scale ΛQCD (for a number of reviews, see 7,8.) As we will discuss,
this limit is extremely nice because of the existence of additional symmetries,
which allow model-independent, nonperturbative statements to be made. This
situation, in which there is a large hierarchy of scales (ΛQCD � mQ) is precisely
the situation where EFT’s simplify life considerably, and most of the progress
in understanding this limit has been done in the context of the “heavy quark
effective theory” (HQET).

2.1 Heavy Quark Symmetry

Consider, for the sake of definiteness, semileptonic B̄ → Deν̄e decay. Based on
our previous discussion, there are two ways to go about calculating this. The
first, illustrated in Fig. 8, is to attempt to tackle the whole problem at once.
This is clearly an impossible task in a strongly interacting theory. The diagram
in Fig. 8 is not only a mess, but it contains all relevant scales of the problem
mixed together: mW (from the propagatingW ), mb (the typical energy release
in the decay), mc (the invariant mass of the final state) and ΛQCD (the typical
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Figure 9: B̄ → Deν̄e at a variety of scales µ.

energy of the strongly coupled gluons). This profusion of scales hides some
essential simplifications which make the problem tractable.

It is more productive to think of the problem in terms of the effective
theory relevant at each scale, as shown in Fig. 9. One begins at a high scale
where the physics is simple and there are no large logarithms in the coefficients
of the Lagrangian, and proceeds to lower the renormalization scale µ via the
renormalization group equations, matching onto a new EFT at each particle
threshold as discussed in the previous section.

Beginning at µ ∼ mW , the process looks quite simple. A free b quark
decays into a c quark and a W , which subsequently decays into the lepton
pair. QCD is not strongly coupled at this scale, so processes with additional
gluons are suppressed and may be perturbatively calculated. The appropriate
EFT at this scale is just the usual SU(2)×U(1) theory of weak interactions. For
mW > µ > mb, theW can no longer be resolved, so the appropriate description
of the decay is via the same four-fermi theory we discussed in the previous
section. For µ < mb, things start to get interesting. In the previous section,
when µ dropped below the threshold for a heavy particle it was integrated out
of the effective theory. But here the situation is different. There is still a single
heavy quark in the initial state, so it can’t be integrated out of the theory. It
is necessary to find the correct description of a massive, stable (with respect
to the strong interactions) quark appropriate for momentum transfers much
smaller than its mass.
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Consider a quark of mass mQ with momentum pµ = mQv
µ, where vµ is

the four-velocity of the heavy quark. If it undergoes a soft momentum transfer
q � mQ, the change in vµ is of order q/mQ, and so vanishes as mQ → ∞.
Thus, the four-velocity of the quark is a conserved quantity in the EFT: in
the appropriate frame the quark is simply a static source of colour charge.
So in the EFT below µ = mQ the heavy quark should no longer be treated
as a fully dynamical object, but rather as a source of colour charge moving
with a velocity which is unchanged by its interactions. (We will discuss the
simplifications this affords in a moment.) Such objects have actually been
studied for quite some time in field theory, long before the introduction of
HQET, and are known as Wilson lines. They are of interest because they are
just classical colour sources.

Continuing to run µ down, at the scale µ = mc one matches onto an EFT
where the c quark is treated as a Wilson line. Finally, it’s only at larger resolu-
tion, µ ∼ ΛQCD, that things get complicated and nonperturbative. Of course,
this is still going to be a problem - writing things as an effective field theory
gets us no closer to solving QCD. However, instead of QCD, one instead is
faced with an EFT in which the dynamics of the b and c quarks are consider-
ably simpler than in full QCD. In the appropriate frame, they just sit there,
surrounded by their colour field. This looks like a trivial observation, but it
immediately leads to several very powerful results.

• Flavour Symmetry: Once a quark is effectively a Wilson line, it doesn’t
matter how massive it is. A heavy quark can have a mass of 5 GeV or
5 kg; either way, it looks infinitely massive to a soft gluon. More prac-
tically, in the low energy theory a c quark looks exactly the same as a b
quark. This statement is powerful because it means that there is a new
symmetry in the effective theory - a flavour symmetry between heavy
quarks. Whenever there is a symmetry in a theory, it allows nonpertur-
bative statements to be made, just based on current conservation. This
is the key to the power of the heavy quark expansion. Note that this is
a rather peculiar flavour symmetry - unlike the usual flavour SU(3), it
doesn’t rely on the quark masses being approximately degenerate. All
that is required is that the b and c masses both be much greater than
ΛQCD. Since it exchanges particles with very different masses, the sym-
metry wasn’t manifest in the QCD Lagrangian.

• Spin Symmetry: The magnetic moment of a particle scales like 1/mQ, so
the interaction of a soft gluon with a heavy quark is spin-independent.
Thus, the EFT should be invariant under rotations of the heavy quark
spin.
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• Pair Production: Since p � 2mQ, there is no pair production in the
effective theory, so particles and antiparticles decouple.

Thus, at leading order in 1/mQ, the EFT relevant for momenta much less
than mc is symmetric under the exchange of, for example, a spin up b quark
with a spin down c quark: both states look identical to the light degrees of
freedom. The new spin-flavour symmetry group for an EFT with Nf heavy
flavours is

SU(2Nf ) × SU(2Nf ) (45)

where the first SU(2Nf) corresponds to particle transformations, and the sec-
ond to antiparticles. (The theory isn’t invariant under particle-antiparticle
exchange, so the symmetry group isn’t SU(4Nf ).) Both of these symmetries
will be exact only at leading order in the EFT; higher dimension operators
scaling like 1/mn

Q will in general break the symmetries. Thus, we should ex-
pect the symmetry breaking effects to be of order ΛQCD/mc ∼ 25% for the c
quark, and ∼ 10% for the b quark.

The simplification that has resulted from the EFT approach is twofold:

• The effects of virtual degrees of freedom at perturbative scales may be
taken into account via perturbation theory. This is the usual matching
and renormalization group running that was discussed in the last lecture,
and sums leading logarithms of ratios of the various scales in the theory.

• The low energy degrees of freedom interact not with complicated, fully
dynamical quarks, but rather with simple static colour charges. The
additional SU(4)× SU(4) symmetry of this limit allows nonperturbative
statements to be made.

Spectroscopy

The first place to look for evidence of this approximate symmetry is in the
spectra of heavy hadrons. The momentum scale relevant to static hadronic
properties is ΛQCD, the typical momentum of the light degrees of freedom in
the hadron. At this scale, a hadron containing a single heavy quarkQ looks like
a static source of colour charge interacting with light degrees of freedom (light
quarks and gluons) which are in some horrible nonperturbative state (aptly
referred to as the “brown muck” of QCD). Since we can’t solve QCD, the
properties of this state aren’t analytically calculable. However, the symmetry
(45) may be used to relate the light degrees of freedom in different hadrons,
since the state of the light degrees of freedom is independent of the spin and
flavour of Q. Thus, states which differ only in the relative spin orientation
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Figure 10: Spectra of heavy hadrons. The excitation energies of the states are relative to
the spin-averaged mass of the lowest lying doublet, m̄Q ≡ (mQ + 3mQ∗ )/4.

of the heavy quark and light degrees of freedom should be degenerate, up to
corrections suppressed by powers of αs(mQ) and ΛQCD/mQ. Pairs of such
states include the D and D∗ pseudoscalar and vector states, the D1(2420) and
D∗2(2460) pseudovector and tensor states, and the corresponding states in the
b system.

The heavy quark flavour symmetry ensures that the excitation energy (that
is, the mass of the state minus the heavy quark mass) of a given state is
independent of the flavour of the quark Q. In Fig. 10 the masses of some of the
low-lying mesons in the b and c systems are plotted, along with the mQ → ∞
limit. It is clear that these expectations hold to a reasonable approximation.

Furthermore, as expected, the hyperfine pseudoscalar-vector splittings are
smaller for the b system than for the c system. This can be made more quanti-
tative. Since the spitting is a magnetic moment effect and so scales like 1/mQ,
we expect

mB∗ −mB

mD∗ −mD
=
mc

mb
' mD

mB
. (46)

Putting in the experimental numbers, this gives

0.32 ' 0.35 (47)

and so the hyperfine splitting indeed scales like 1/mQ.

Semileptonic Decays

Semileptonic b → c decays are probably the most important application of
the approximate symmetries that arise in HQET. Even though we haven’t
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solved any of the problems of hadronization, symmetry arguments again greatly
restrict the form of the result.

Consider the semileptonic decays B̄ → Deν̄e and B̄ → D∗eν̄e. On the
basis of Lorentz invariance, the relevant amplitudes may be decomposed in
terms of form factors,

〈D(v′)|c̄γµb|B(v)〉 = h+(w)(vµ + v′µ) + h−(w)(vµ − v′µ)

〈D(v′)|c̄γµγ5b|B(v)〉 = 0

〈D∗(v′, ε)|c̄γµb|B(v)〉 = ihV (w)εµναβε
∗
νv
′
αvβ

〈D∗(v′, ε)|c̄γµγ5b|B(v)〉 = hA1
(w)(w + 1)ε∗µ

−ε∗ · v [hA2
(w)vµ + hA3

(v)v′µ] (48)

where v and v′ are the four-velocities of the hadrons, w = v · v′, and ε is
the polarization of the D∗. The form factors hi depend on the details of
hadronization. They are not calculable in perturbation theory, and are a pri-

ori independent functions, each of which must be measured experimentally.
However, in the heavy quark limit they are all related by symmetry. To see
this physically, consider the semileptonic decay in the low energy theory. A
b quark moving with constant velocity vµ surrounded by brown muck in its
ground state suddenly decays to another colour source, this time moving with
some other constant velocity v′µ, due to the large energy release in the decay.
The only property of the charmed final state which is relevant to the decay is
its relative velocity to the initial b quark - in particular, its spin and flavour are
completely irrelevant, as our symmetries assured us. Thus, the various form
factors in Eq. (48) must all be proportional to the overlap between the light
degrees of freedom in a B̄ meson moving with a velocity v and the light degrees
of freedom in a D meson moving with velocity v′. Somewhat schematically,
we write the overlap between the light degrees of freedom as a function of w,

〈light degrees of freedom, v|light degrees of freedom, v′〉 = ξ(w). (49)

Classifying the states in terms of their transformation properties under the
spin-flavour symmetry, it can be shown with a minimal amount of group
theory9,10 that the form factors satisfy

h+(w) = hV (w) = hA1
(w) = hA3

(w) = ξ(w),

h−(w) = hA2
(w) = 0 (50)

where the universal function ξ(w) is known as the Isgur-Wise function. Heavy
quark symmetry has reduced seven unknown and a priori independent form
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factors to a single unknown function ξ(w). Similar arguments may be made
for B decays to other exclusive charmed final states, although since the light
degrees of freedom are in different states, there will be a different universal
function for each spin multiplet.

For semileptonic B̄ → D(∗) decays there is even more nonperturbative
information available. Because of the spin and flavour symmetries, the light
degrees of freedom are in the same state (except for the boost) in both the
initial and final hadrons, regardless of whether the final hadron is a D or a D∗.
Therefore, at the kinematic point where the velocities of the initial and final
quarks are the same, from the point of view of the light degrees of freedom,
then, absolutely nothing has happened! The overlap between the initial and
final states is unity. (This is the point where the invariant mass q2 of the
lepton pair is a maximum). Thus, we have the remarkable property that the
Isgur-Wise function is known at one point:

ξ(1) = 1. (51)

(Note that a corresponding statement for B̄ decays to other charmed states
is not true. Rather, the relevant matrix element at zero recoil to states other
than D or D∗ vanishes in the heavy quark limit, since the light degrees of
freedom in the states are orthogonal). The phenomenological significance of
this relation should be clear - at this one kinematic point, there are no hadronic
uncertainties in the calculation of the decay rate at leading order in 1/mb,c and
αs. This gives one the opportunity to measure the CKM matrix element Vbc

in a model-independent way. Since this discovery in the original Isgur-Wise
papers9, much of the effort in HQET has concerned calculating the corrections
to this result. In order to do this, in the next section we will explicitly construct
the EFT for heavy quarks.

2.2 Heavy Quark Effective Theory

Having discussed some of the physical consequences of the enhanced sym-
metries of QCD with heavy quarks, we now turn to the construction of the
appropriate EFT. This will allow us to calculate (or at least parameterize) the
corrections to the heavy quark limit in a systematic way.

Recall that we are expanding the theory in powers of the typical momen-
tum of a light degree of freedom over the mass of the heavy quark. This may
be made more quantitative by noting that if a heavy hadron is moving with
four-velocity vµ, the bulk of its four-momentum is carried by the heavy quark.
The quark momentum may then be separated into a “large” piece (scaling like
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mQ) and a “small” piece (scaling like ΛQCD):

pµ
Q = mQv

µ + kµ. (52)

kµ is often referred to as the “residual” momentum of the heavy quark, and
its size is set by ΛQCD. Now, in the limit mQ → ∞, interactions with the
light degrees of freedom cannot change vµ, but only kµ. vµ is a therefore a
conserved quantity in the EFT, and may be used to label heavy quark states.
To construct the kinetic term for this object, we expand the heavy quark
propagator in powers of kµ/mQ:

i(p/+mQ)

p2 −m2
Q

=
imQ(v/ + 1 + k//mQ)

2mQv · k + k2
=

i

v · k

[

1 + v/

2

]

+O(1/mQ) (53)

1+v/
2 is a projection operator, projecting out the “large” Dirac components of the

heavy quark spinor. Thus, the degrees of freedom in HQET are two-component
spinors hv satisfying

(

1 + v/

2

)

hv = hv,

(

1 − v/

2

)

hv = 0. (54)

with Lagrangian
L = h̄viD · vhv +O(1/mQ). (55)

The large component of the heavy quark momentum has also been removed
from hv by pulling out a phase

hv ∼ eimv·xψQ (56)

(where ψQ is the field in the full theoryc) and so there are no large dynamical
momenta in the EFT. Because of this phase redefinition, the free fields satisfy

∂µhv = −ikµhv (57)

so derivatives just pull down factors of the residual momentum. Thus, the
derivative expansion is an expansion in powers of kµ/mQ, as required. Note
also that sandwiching a γµ between projection operators just gives vµ:

(

1 + v/

2

)

γµ

(

1 + v/

2

)

=

(

1 + v/

2

)

vµ (58)

and so the heavy quark-gluon coupling has Feynman rule igsv
µT a. This this

is exactly what one gets from the covariant derivative in (55).

cOne shouldn’t take this relation too literally. There is no simple relation between the full
heavy quark field and the field in the EFT, as their high-momentum modes are completely
different.
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Figure 11: Feynman rules for HQET at leading order in 1/mQ.

For a theory with heavy b and c quarks, the leading order Lagrangian is
(in obvious notation for the two flavours)

L = b̄viD · vbv + c̄viD · vcv +O(1/mb, 1/mc). (59)

L is invariant under flavour rotations between bv and cv (note that the flavour
symmetry interchanges quarks of equal velocities, not momenta) as well as
spin rotations (since there is no γ structure in L at this order). Thus, the
SU(4)× SU(4) symmetry we argued for on physical grounds is manifest in the
effective Lagrangian.

Furthermore, in the EFT we can easily understand the normalization con-
dition ξ(1) = 1 in terms of the symmetry. The currents

c̄vΓbv, b̄vΓcv, b̄vΓbv, c̄vΓcv (60)

(where Γ = γµ or γµγ5) are all conserved currents corresponding to the spin-
flavour symmetry. Thus, their matrix elements are related to a conserved
charge, and so are fixed. Explicitly,

〈Bv|b̄vγµbv|Bv〉 (61)

is the b-quark current, which just counts the number of b’s in a B meson, and
so its matrix element is fixed to 1 (with appropriate normalization). But we
can do a flavour rotation, followed by a spin rotation, to relate this to any of
the matrix elements of interest:

〈Bv|b̄vγµbv|BV 〉 ∼ 〈Dv|c̄vΓbv|BV 〉 ∼ 〈D∗v |c̄vΓbv|BV 〉 (62)

for any Dirac matrix Γ. Thus, all weak matrix elements in B̄ → D(D∗)eν̄e are
fixed at zero recoil (v = v′) by the symmetries of the effective theory. Away
from zero recoil, we can still use spin-flavour symmetries to relate all of the
form factors to a single form factor, ξ(v ·v′). For example, under a spin rotation

〈Dv′ |c̄v′γµbv|BV 〉 ∼ 〈D∗v′(ε)|c̄v′γµbv|BV 〉 (63)
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which relates h+(v · v′) and hV (v · v′) as defined earlier,

h+(v · v′) = hV (v · v′) = ξ(v · v′) (64)

up to O(1/mb,c) corrections. Similar (and more careful, using the transforma-
tion properties of the states and currents under the SU(4)× SU(4) symmetry)
arguments give the compete set of relations in Eq. (50).

Example: Decay Constants

The decay constant of a heavy pseudoscalar meson M , fM , containing a heavy
quark Q and a light quark q, is defined as

〈M |Q̄γµγ5q|0〉 ≡ ipµ
QfM . (65)

This matrix element cannot be calculated in perturbation theory; however,
heavy quark flavour symmetry relates the constants fB and fD. The only
subtlety in this relation is the normalization of the states, since in the standard
relativistic normalization the states are proportional to

√
mQ. Pulling out

this normalization, and noting that pQ ∼ mQ, the prediction of heavy quark
symmetry is

fD

fB
=

√

mB

mD
+O

(

αs,
ΛQCD

mb,c

)

. (66)

Now let us consider radiative corrections to this result. At one loop in
full QCD, the matrix element of the heavy quark operator would contain large
logarithms, of order αs logmb/λ, where λ is the typical “soft” momentum scale
in the problem. The leading logs may be summed in the EFT by matching at
tree level and running at one loop with the renormalization group equationsd.

Above µ = mb the current b̄γµγ5q is partially conserved, and so has zero
anomalous dimension. There are thus no logarithms of mW /mb to sum. At
the scale µ = mb, we match onto a theory with a single heavy quark. The
original current then becomes, in the effective theory,

b̄γµγ5q → c(mb)b̄vγ
µγ5q + . . . (67)

where the dots denote higher dimension operators (such as b̄vD/γ
µγ5q) which

are suppressed by powers of 1/mQ. At tree level, the matching is trivial:
c(mb) = 1.

dSee also Ref.11, where the running was calculated in the full theory, by summing the finite
logs of mb/λ. The calculation is much simpler in the EFT.
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Figure 12: Diagrams contributing to the one-loop anomalous dimension of b̄vγµγ5q.

Now we run the operator down to the next interesting momentum scale,
mc. The anomalous dimension of the heavy-light current is calculated from
the graphs in Fig. 12,

γ = 4
αs

π
. (68)

At µ = mc, the only change in the theory is that the c quark is integrated out,
so the β function changes. Below µ = mc, the operator continues to run, this
time in a theory with three light flavours. The result is

c(µ) =

(

αs(mb)

αs(mc)

)6/25 (
αs(mc)

αs(µ)

)6/27

(69)

The effects of the gluons with momenta in the region µ and mb have now been
explicitly taken into account analytically - the first factor comes from running
between mb and mc, and the second from mc to µ.

Furthermore, this also gives the leading flavour symmetry breaking cor-
rections to the ratio fB/fD. Since the operator c̄γµγ5q doesn’t start running
until µ = mc, we obtain the ratio

fB

fD
=

√

mD

mB

(

αs(mb)

αs(mc)

)6/25

+O(1/mc,b, α
2
s log(mb/mc)). (70)

The running is about a 10% effect. Physically, the symmetry breaking effect
arises because virtual gluons between µ = mc and µ = mb can distinguish c
from b quarks.

Higher Orders in 1/mQ

In addition to symmetry-breaking corrections due to virtual gluons, there are
corrections to our results suppressed by powers of ΛQCD/mc and ΛQCD/mb

from nonrenormalizable operators in the EFT. Since ΛQCD/mc ∼ 0.2, such
effects are crucial if HQET is to be useful for precision physics. But as in
any EFT, we can work to arbitrary precision in the ratio of scales, with the
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tradeoff being the introduction of more and more unknown matrix elements.
Fortunately, as we will see, it is possible to make statements which are correct
beyond leading order in 1/mc, giving us real precision calculations.

It is straightforward to extend the Lagrangian to higher orders in 1/mQ.
There are only two dimension five operators (corresponding to O(1/mQ)) op-
erators we can write down in the EFT,

L1 =
1

2mQ

(

c1(µ)h̄v(iD)2hv + c2(µ)h̄vσ
αβGαβhv

)

. (71)

There is an additional dimension five operator, h̄v(iD · v)hv, but this vanishes
by the equation of motion,

D · vhv = 0 +O(1/mQ) (72)

and so may be neglected. By considering their action on free fields, we see
that O1 is the kinetic energy term (p2/2mQ), whereas O2 is the chromomag-
netic moment operator that we saw in the previous section. Note that O1

violates heavy flavour symmetry, while O2 violates both spin and flavour sym-
metry. This justifies our previous assertion that the pseudoscalar-vector mass
splittings scale like 1/mQ.

It is easiest to calculate c1 and c2 by considering the gluon-quark-quark
vertex in QCD. This can be expanded in powers of 1/mQ via the Gordon
decomposition:

ū(p′)γµu(p) =
(pµ + p′µ)

2mQ
ū(p′)u(p) + i

(pν − p′ν)

2m
ū(p′)σµνu(p)

= vµū(p′)u(p) +
1

2mQ
(kµ + k′µ)ū(p′)u(p) + i

pν − p′ν
2mQ

ū(p′)σµνu(p)

+ . . . . (73)

This gives the tree-level matching conditions

c1(mQ) = 1, c2(mQ) =
g

2
. (74)

Given the Lagrangian to O(1/mQ), to calculate the matrix element of an
operator O to this order one must include matrix elements of the time-ordered
products of O with the 1/mQ operators in L. Such matrix elements cannot
be calculated in a strongly interacting theory, and so must be parameterized
(again, in an SU(2Nf) × SU(2Nf) invariant way), reducing the predictive
power of the EFT. In addition, the operator O (for example, a weak current)
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must be matched to O(1/mQ), introducing more unknown matrix elements.
We will see this explicitly in the next section.

One can, in principle, continue this indefinitely. However, even atO(1/m2
Q)

the EFT is rather complicated12. In addition to the Darwin and spin-orbit
terms,

OD =
g

8m2
h̄ (DµG

µν) vνh, OS = i
g

8m2
h̄σµν{Dµ, Gρν}vρ, (75)

there are eight (!) four-fermion operators, one “penguin” operator and two
triple-gluon operators. The equations of motion simplify this list somewhat,
but there are still clearly too many operators to do much that’s useful, beyond
estimating the size of the effects.

Application: Extracting |Vbc| from B̄ → D(∗)eν̄e

Let us now use the EFT machinery to calculate the corrections to the prediction
of the absolute normalization of the form factors for B̄ → D∗eν̄e at zero recoil.
Quite generally, we can write the differential decay rate

dΓ

dw
(B̄ → D(∗)eν̄e) =

G2
F

48π3
|Vbc|2(mB −mD∗)2m3

D∗(w + 1)3
√

w2 − 1

×
[

1 +
4w

w + 1

m2
B − 2wmBmD∗ +m2

D∗

(mB −mD∗)2

]

|F (w)|2 (76)

where

F (w) = ξ(w) +O(αs) +O(1/mc,b) (77)

and the complicated w dependence just comes from the phase space integrals.

Radiative Corrections: These arise from perturbative corrections to match-
ing conditions, as well as running between µ = mb and µ = mc, and so are
completely calculable. In fact, the one-loop running calculation is the same one
we encountered for the ratio of decay constants. The sequence of matchings is
that shown in Fig. 9,

c̄γµ(1 − γ5)b
µ=mb−→ c(mb)c̄γ

µ(1 − γ5)bv
run−→ c(mc)c̄γ

µ(1 − γ5)bv
µ=mc−→ c′(mc)c̄vγ

µ(1 − γ5)bv. (78)

Since the current is conserved for v = v′, its anomalous dimension vanishes
below µ = mc. From our previous results, then, we get the leading perturbative
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correction to our results,

c̄γµ(1 − γ5)b→
(

αs(mb)

αs(mc)

)6/25

c̄vγ
µ(1 − γ5)bv (79)

and so

F (1) =

(

αs(mb)

αs(mc)

)6/25

+O(αn+1
s lognmc/mb) +O(1/mb,c). (80)

At next order, the current must be matched to O(αs) accuracy, and the
running performed to two loops (resumming all terms of order αn+1

s lognmc/mb).
This calculation has been done13, and is included below.

Power Corrections: Just as the Lagrangian has corrections corresponding
to higher dimension operators, so the weak current matches in the EFT onto
additional operators. For general v and v′, the only operator at O(1/mc) is

c̄v′iD/
←
γµ(1 − γ5)bv (81)

and so at O(1/mc) we need the matrix element

〈D(∗)(v′)|c̄v′ iD/
←
γµ(1 − γ5)bv|B(v)〉 (82)

There are three possible form factors required to describe the matrix elements
of this operator in HQET. Furthermore, additional 1/mQ corrections arise due
to T-products of 1/mQ operators in the effective Lagrangian and the leading
order current,

〈D(∗)(v′)|T (c̄v′γµbv,L1)|B(v)〉. (83)

However, at zero recoil (v = v′) things simplify dramatically: both of these
corrections vanish, although each for a different reason14.

• The T-product in (83) vanishes by the Ademollo-Gatto theorem when
v = v′. The theorem states that the symmetry breaking corrections to
matrix elements of an approximate symmetry current are second order
in the breaking terms in the Lagrangian.

• The matrix element (82) can be related, when v = v′, to the matrix

element of the operators c̄v
←
D · vbv, which vanishes by the equations of

motion.
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Thus, we have the nice result that the leading nonperturbative effects to the
absolute normalization of the Isgur-Wise function at zero recoil are of order
ΛQCD/m

2
c , not ΛQCD/mc. This immediately raises this prediction to a reason-

able level of precision, since corrections of order Λ2
QCD/m

2
c are expected to be

of order 5%.
Putting everything together, we find

F (1) = 1 + η
(1)
A

αs(mb)

π
+ η

(2)
A

(

αs(mb)

π

)2

+ δ1/m2 +O
(

α3
s, 1/m

3
b,c

)

= 0.960 ± 0.007 + δ1/m2 +O
(

α3
s, 1/m

3
b,c

)

(84)

where δ1/m2 refers to the incalculable O(1/m2
c,b) corrections. There have been

a number of attempts to estimate the size of these corrections from quark
models, sum rules and other methods. Combining the results in the literature
gives the rough estimate

δ1/m2 = −5.5 ± 3% (85)

which gives the result
F (1) = 0.91 ± 0.04. (86)

Combining this with the measured value of dΓ/dw at the endpoint (see Ref. 15

for a compilation of the experimental results) gives the value

|Vbc| = 0.0376± 0.0015expt. ± 0.0012theory. (87)

2.3 Other Applications of the 1/mQ Expansion

The heavy quark expansion has becoming the starting point for much of B
phenomenology today. Another application of particular interest is the case of
inclusive decays, such as

B̄ →
∑

Xc

Xceν̄e (88)

where all charmed final hadronic states Xc are summed over. In this case,
the heavy quark expansion may be used to show that for sufficiently inclusive
quantities (such as the total decay width, the electron spectrum in B decays,
or moments of the invariant mass spectrum in B decays) the free quark result
calculated in perturbation theory

b→ ceν̄e + anything (89)

is the leading term in a 1/mQ expansion. Just as in HQET, the subleading
effects may be systematically taken into account through higher dimension op-
erators. Such an approach has had many applications, particularly in providing
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an alternative method of extracting Vbc (which agrees well with the result pre-
sented here), as well as for studying other decays such as semileptonic b → u
and the rare decays B → Xsγ and B → Xse

+e− (for reviews, see 8).

3 EFT’s Without Matching: Chiral Perturbation Theory

In the examples of effective field theories we have seen thus far, the theories
were weakly coupled at the matching scale, and so the matching conditions
were perturbatively calculable. Thus, the coefficients of all operators in the
EFT were calculable, at least in principle.

However, if the underlying theory is nonperturbative at the matching scale,
the coefficients in the EFT cannot be calculated perturbatively. The classic
example of this situation is chiral perturbation theory, the EFT describing the
interactions of the light pseudoscalar mesons π, K, η at low momenta. Despite
the fact that the coefficients of the EFT are not perturbatively calculable, the
symmetries and power counting may be used to obtain a remarkable amount
of predictive power. In this section, we will develop the formalism of chiral
perturbation theory, and discuss some of its phenomenological applications.
For reviews of the subject, see 16,17,18.

3.1 Chiral Symmetry Breaking

Why is the pion so light? By light, we mean light compared to the typical
masses one encounters in QCD. The pion mass is a nonperturbative effect, and
the typical mass scale associated with nonperturbative effects in QCD is ∼ 1
GeV, roughly the mass of the proton. The pion, in contrast, weighs in at a
scant ∼ 140 MeV.

Recall that it is very unnatural to have very light particles in a theory,
unless there is an approximate symmetry which makes them massless. For
the pions (and the rest of the octet of light pseudoscalars, the kaons and
the eta) this is indeed the reason - these particles are the (pseudo)-Goldstone
bosons (PGB’s) of the approximate SU(3)L×SU(3)R chiral symmetry of QCD,
which is spontaneously broken by QCD dynamics to the diagonal subgroup,
SU(3)L+R. Because of this, the interactions of the light octet are strongly
constrained by the symmetries of the theory. To see how this comes about in
an EFT, let’s first consider a simpler, familiar case.
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Figure 13: The potential in Eq. (90). The vacuum lies on any point on the minimum, and
spontaneously breaks the O(2) symmetry.

Example: Spontaneously broken O(N)

Consider a simple theory of a two real scalar fields,

L =

2
∑

i=1

1

2
∂µϕi∂

µϕi −
λ

4

(

ϕ2
1 + ϕ2

2 − v2
)2
. (90)

The Lagrangian has an O(2) symmetry. However, the minimum of the poten-
tial lies along the curve ϕ1+iϕ2 = veiθ, as shown in Fig. 13. All values of θ are
equivalent, however for any value of θ the the O(2) symmetry is spontaneously
broken. Goldstone’s theorem tells us that there is a massless excitation, a
Goldstone boson, corresponding to excitations of the field along the minimum
of the potential. Choosing the vacuum to lie in the ϕ1 direction,

〈ϕ1〉 = v, 〈ϕ2〉 = 0 (91)

and defining the shifted fields

ϕ̃1 = ϕ1 − v, ϕ̃2 = ϕ2 (92)

the Lagrangian reads

L =
1

2
∂µϕ̃1∂

µϕ̃1 +
1

2
∂µϕ̃2∂

µϕ̃2 −
λv2

2
ϕ̃2

1

− λv

2
√

2
ϕ̃1ϕ̃

2
2 −

λv

2
√

2
ϕ̃3

1 −
λ

16
(ϕ̃2

1 + ϕ̃2
2)

2 (93)

In accordance with Goldstone’s theorem, the ϕ̃2 field is a massless Goldstone
boson (GB), while the ϕ̃1 field has a mass m1 =

√
λv. However, this choice of
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fields obscures some important physics. Instead, let us combine the two real
fields into a single complex field φ = ϕ1 + iϕ2, and write φ in terms of radial
and angular fields ρ(x) and θ(x),

φ = (v + ρ(x)) eiθ(x)/v. (94)

The broken O(2) symmetry is equivalently a U(1) transformation of φ,

φ→ eiλφ, (95)

and in terms of the angular variables, the Lagrangian is

L =
1

2
∂µρ∂

µρ− λv2

2
ρ2 +

1

2
∂µθ∂

µθ

+
1√
2v
ρ(∂µθ∂

µθ) +
1

4v2
ρ2∂µθ∂

µθ − 1

2
√

2
λvρ3 − λ

16
ρ4. (96)

In this form, we see that the Goldstone boson θ is derivatively coupled. Thus,
its interactions are proportional to its momentum, and as p→ 0 it becomes a
free field. This is clear geometrically, since the potential is only a function of
the radial direction and not the angle, so there can be no non-derivative terms
containing θ(x) in the Lagrangian. The derivative couplings of Goldstone
bosons is another general consequence of the spontaneous symmetry breaking
of a global symmetry, and will be very important in our discussion of pion
interactions.

The mass of the heavy mode (the ϕ̃1 or the ρ) in this theory is proportional
to v. Thus, if we are now interested only in the low-momentum (pµ � v) in-
teractions of the Goldstone bosons, we should integrate out the massive degree
of freedom and construct an EFT of only the Goldstone boson. In terms of
the angular variables, the resulting EFT will clearly only contain derivative
couplings. In terms of the ϕ̃2 field this is not obvious (since the ϕ̃2 direction is
only tangent to the vacuum manifold, and so the potential is not flat in that di-
rection). However, if you calculate the matching conditions, you will find that
the contribution from integrating out ϕ1 exactly cancels the non-derivative
couplings in L, again leaving a derivatively coupled theory.

Equivalently, since at low energies the only allowed excitations lie on the
vacuum manifold |φ|2 = v2, let us define

Ξ = eiθ(x)/v, 〈Ξ〉 = 1. (97)

Ξ is just as good a field as ϕ̃2 or θ to describe the dynamics of φ when it is
constrained to lie on the vacuum manifold, as it is in the EFT below v. In this
representation, the field Ξ transforms linearly under the broken U(1),

Ξ → eiλΞ (98)
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whereas the θ field shifts by a constant,

θ → θ + vλ. (99)

The low energy EFT

Left =
v2

2

[

∂µΞ†∂µΞ +
a1

v2
(∂µΞ†∂µΞ)2 + . . .

]

(100)

is invariant under the spontaneously broken U(1)

Ξ → eiλΞ (101)

and the ai’s are calculable via the usual matching procedure. The EFT is thus
an expansion in powers of p2/v2, with the normalization of the first term fixed
since it is the GB kinetic term.

Now, what happens if the original theory becomes strongly coupled (λ ≥
4π)? In this case, we can no longer calculate the ai’s. However, as long
as the U(1) is still spontaneously broken, the EFT still has the same form,
a derivative expansion, with the coefficient of the kinetic term fixed. Even
though the theory is now strongly interacting, the Goldstone bosons are still
weakly coupled at low energies, with their interactions suppressed by p4/v4,
just by dimensional analysis. Thus, the most general EFT for Ξ is obtained
by writing down the most general interactions invariant under the unbroken

symmetry, with the size of the coefficients set by dimensional analysis in 1/v.
Even in a simple spontaneously broken U(1) theory, surprising powerful

results may be obtained with little or no work. For a nice example of this this,
the reader is referred to Weinberg’s book18, in which the salient features of
superconductors are obtained in the EFT language, solely from power counting
and the properties of the Goldstone bosons of a spontaneously broken U(1).

Now let us extend this analysis to a more complicated broken symmetry
group. In any low energy EFT of Goldstone bosons, the fields are constrained
to lie on the vacuum manifold, since all other excitations have been integrated
out of the theory. For example, extending this example to a theory of N fields,
~ϕ = (ϕ1, . . . , ϕN ), the Lagrangian

L =
N
∑

i=1

1

2
∂µϕi∂

µϕi −
λ

4

(

N
∑

i=1

ϕ2
i − v2

)2

(102)

has an O(N) symmetry. If we choose the VEV of ~ϕ to lie in the ϕN direction,
this breaks the O(N) symmetry down to O(N − 1), the rotations of the N − 1
other fields. There are N − 1 broken generators, and so N − 1 Goldstone
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bosons. Any point in the vacuum manifold may be obtained by acting on
the VEV with a broken generator (moving along the bottom of the N − 1
dimensional trough),

~ϕvacuum = ei
∑

s
tsλs









0
...
0
v









(103)

where the sum runs only over the broken generators ts. Thus, we can describe
the Goldstone modes by the field

Ξ = ei
∑

s
tsπs(x)









0
...
0
v









(104)

where the πs’s are Goldstone boson fields. Once again, the EFT may be
expanded in powers of momentum,

L =
1

2

[

∂µ

(

e−i
∑

s
tsπs

)

∂µ
(

ei
∑

s
tsπs

)]

NN
+O(p4) (105)

(where the subscript NN refers to the element of the N × N matrix). Now,
however, the nonabelian nature of the group gives us more information. Ex-
panding the kinetic terms in terms of the GB fields πs, the two-derivative
term contains an infinite number of Goldstone boson self interactions, the co-
efficients of which are fixed by the spontaneously broken symmetry. Thus,
spontaneously broken nonabelian global symmetries relate processes with dif-
ferent numbers of Goldstone bosons. Corrections to these relations arise from
higher dimension operators in the Lagrangian, so are suppressed by power of
p2 and are not important at sufficiently low energies. These various relations
go under the name of “current algebra”, and can be obtained in other ways,
but in the EFT language they simply fall out of the formalism. Furthermore,
the EFT gives us a systematic approach to parameterizing the corrections to
these relations.

3.2 Spontaneous Symmetry Breaking in QCD

Let us now apply these concepts to QCD. QCD with massless u, d, s quarks
is invariant under separate flavour SU(3) rotations for left and right-handed
quark fields:

L = ψ̄LiD/ψL + ψ̄RiD/ψR (106)
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where

ψ =





u
d
s



 (107)

and the symmetries are

ψL → LψL, L = eilaTa

ψR → RψR, R = eiraTa . (108)

If this symmetry were not spontaneously broken, one could perform an axial
transformation and change a scalar meson to a pseudoscalar, or a vector to a
pseudovector. Thus, mesons would come in degenerate parity doublets (at least
approximately, since the symmetry is weakly broken by the light quark masses
and charges). The pion and the a0(980) would be approximately degenerate,
as would the ρ(770) and a1(1260). Since this is clearly not the case, chiral
symmetry must be spontaneously broken. There is no scalar field around
to pick up a VEV; instead, the fermion bilinear ψ̄ψ obtains a VEV due to
nonperturbative effects

〈ψ̄ψ〉 = 〈ψ̄LψR + ψ̄RψL〉 ∼ 1 GeV3. (109)

This breaks the chiral symmetry down to the diagonal subgroup L = R (the
usual SU(3) of flavour, denoted SU(3)V )

ψ → eiλaTaψ. (110)

The axial symmetry, L = R†, or

ψ → eiγ5λaTaψ (111)

is spontaneously broken. There are eight broken generators, and thus there
will be eight Goldstone bosons. These have the correct quantum numbers to
be the three pions, four kaons and the eta.

The Chiral Lagrangian

In analogy with the U(1) case, we can write down an EFT of only the Goldstone
bosons. The other excitations like the ρ’s and ω’s have been integrated out
of the theory, just like ϕ̃1, so the excitations are constrained to lie along the
vacuum manifold. The vacuum now has eight flat directions, corresponding to
the eight broken generators. As in the previous examples, we work in “angular”
variables. Fluctuations along these flat directions can be described by the field

Σ = e2iπ̃/f (112)
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where f is some dimensionful parameter required to get the units right, and

π̃ = πaT a =
1√
2







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






(113)

is the Goldstone boson matrix. Under an SU(3)L × SU(3)R transformation,
Σ transforms in the same way as the bilinear ψ̄RψL,

Σ → LΣR† (114)

This seemingly arbitrary choice is only one of an infinite number of ways to
represent the PGB fields. The others are all related via field redefinitions, and
so give the same S-matrix elements19. The essential feature of this represen-
tation is that under the unbroken SU(3)V , the pions transform linearly in the
adjoint representation,

L = R = eiλaTa ⇒ π̃ → eiλaTa π̃e−iλaTa (115)

while they transform nonlinearly under the broken symmetry,

L = R† = eiλaTa ⇒ πa → πa + fλa +O(λ2). (116)

This is analogous to the transformation (99) in the U(1) theory.
Written in terms of Σ, the EFT must be invariant under the full symmetry

group. However, since the vacuum of the theory is at πa = 0, or

Σ =





1 0 0
0 1 0
0 0 1



 (117)

the symmetry is indeed spontaneously broken to SU(3)V . Since the theory is
strongly interacting at the breaking scale, we can’t match onto the low-energy
theory in perturbation theory; however, as in the O(N) case, we can still
expand the Lagrangian in powers of derivatives. Since we are interested in the
low-energy dynamics of the Goldstone bosons, we should be able to truncate
it after a few terms.

In accordance with the general requirement for Goldstone bosons, there
are no terms in the EFT with 0 derivatives, since Σ†Σ = 1; the Goldstone
bosons must therefore be derivatively coupled, as required on general grounds.
Lorentz invariance forbids any term with a single derivative since there is no
other vector in the theory. At two derivatives, there is only one possible term,

Tr
[

∂µΣ†∂µΣ
]

=
4

f2
Tr [∂µπ̃∂

µπ̃] + . . . (118)
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(any other two-derivative term may be put in this form after an integration by
parts). Immediately we recognize this term as the kinetic term for the mass-
less GB’s. This term must be correctly normalized, so we have our effective
Lagrangian to O(p2):

LEFT =
f2

4
Tr
[

∂µΣ†∂µΣ
]

+O(p4). (119)

As in the O(N) case discussed previously, the kinetic term contains an
infinite number of multi-particle interactions, whose coefficients are all related
by chiral symmetry. Expanding L in terms of the fields, we find

LEFT = Tr∂µπ̃∂
µπ̃ +

1

3f2
Tr [π̃, ∂µπ̃]2 + . . . (120)

where the ellipses denote additional multi-pion interactions. Thus, to O(p2)
all the PGB self interactions are determined by a single constant f .

Symmetry Currents

The only constant we have to determine in L to this order is f . This can be
related to an observable in a very elegant way. Recall that a symmetry of a
theory corresponds to a conserved current. In QCD, the currents associated
with SU(3)×SU(3) are easy to calculate, via the standard Noether procedure.
They are

jµ
Aa = ψ̄γµγ5Taψ, jµ

V a = ψ̄γµTaψ (121)

where A and V refer to axial and vector transformations, respectively. The
interesting observation is that these currents also appear in the weak Hamil-
tonian describing, for example, pion decay,

HW =
c

m2
W

ūγµ(1 − γ5)dν̄eγµ(1 − γ5)e+ . . . (122)

even though in this context they have nothing to do with the global SU(3) ×
SU(3) symmetry (instead, they are weak gauge symmetry currents). But a
current is a current, and since the EFT has the same symmetries as full QCD,
the conserved currents in the two theories must be the same. (This is the
same situation that arose in HQET, where we exploited the fact that weak
currents were global symmetry currents in the EFT to determine their matrix
elements.) The matrix element of the weak current between a pion and the
vacuum is measured in pion decay,

〈0|jµa
A |πb〉 ≡ ifπp

µδab (123)
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where fπ ' 93 MeV is the pion decay constant. Thus, if we construct the
symmetry current corresponding to an axial flavour rotation in the effective
theory, we can calculate its matrix element between a pion and the vacuum;
this will allow us to determine f in terms of fπ.

Recall the Noether procedure: if L is invariant under an infinitesimal global
symmetry transformation with parameter ε, the corresponding conserved cur-
rent is given by the change in L when ε is taken as a function of x:

δL = ∂µε(x)jµ(x). (124)

Let us now construct the symmetry currents in the effective theory. Under an
infinitesimal LH transformation, we have

Σ → Σ + iεaLT
aΣ. (125)

Substituting this into Eq. (119), gives

δL = ∂µε
a
LTr

[

T aΣ∂µΣ†
]

(126)

and so the conserved current corresponding to an SU(3)L transformation is

jµa
L =

i

2
f2Tr

[

T aΣ∂µΣ†
]

. (127)

Similarly,

jµa
R =

i

2
f2Tr

[

T aΣ†∂µΣ
]

(128)

and so the axial current is

jµa
A = jµa

R − jµa
L = −f∂µπ̃ + . . . (129)

where we have expanded the Σ field in terms of GB fields, and the dots denote
terms with additional fields.

This is worth contemplating for a moment - using the symmetries of the
theory, we have expressed a quark current in terms of pion fields! This is real
nonperturbative information, and we got it without solving anything nonper-
turbative. Such is the power of symmetry. Now, matrix elements of π̃ fields
are trivial to calculate,

〈0|jµa|πb〉 = 〈0| − f∂µπ̃a + . . . |πb〉 = ifpµδab. (130)

Comparing this to Eq. (123) we immediately conclude

f = fπ ' 93 MeV. (131)

Thus, we have completely determined L to O(p2).
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Figure 14: Diagrams contributing to semileptonic K decay to leading order: (a) K → µν̄µ,
(b) K → πµν̄µ, (c) K → ππµν̄µ.

Application: Semileptonic K Decay

Already we have a lot of predictive power, particularly for semileptonic K
decays. This is because the decays

K− → µν, K− → µνπ0, K− → µνπ+π−, . . . (132)

are all determined by matrix elements of the weak current ūγµ(1−γ5)s, which
is also a flavour symmetry current of the chiral Lagrangian.

By arguments identical to those in the last section, this current may be
written in terms of the Goldstone boson fields. Carrying out the expansion to
a few more orders in the fields gives

ūγµ(1 − γ5)s → −
√

2f∂µK− − i√
2

[

K−∂µπ
0 − π0∂µK

−]

+

√
2

3f

[

K−π+∂µπ
− − 2K−π−∂µπ

+ − 1

2
K−π0∂µπ

0

+
1

2
π0π0∂µK

− + π+π−∂µK
−
]

+ . . . . (133)

Thus, we can compute all these decay rates in chiral perturbation theory, solely
in terms of f . The relevant diagrams are shown in Fig. 14.

3.3 The Chiral Symmetry Breaking Scale

So far, our results have been determined only by symmetries of the theory, and
have been independent of the details of QCD (and thus, the success of these
predictions tells us no more about QCD than its global symmetry structure).
The deviations from these predictions arise at higher orders in p2. At O(p4),
for example, there are four derivative terms like terms like

L4 = a1Tr∂µΣ∂µΣ†∂νΣ∂νΣ† + . . . . (134)
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Figure 15: π − π scattering at O(p4).

By dimensional analysis, this term will give a contribution of order p2/Λ2
χ

relative to the leading term, where Λχ is the scale of new physics at which the
EFT breaks down, set by the scale of the VEV of ψ̄ψ. If QCD were weakly
interacting at the matching scale we could calculate a1, but since it is not,
all we have is dimensional analysis. Physically, we expect Λχ ∼ mρ, since
this is the lightest resonance we have integrated out of the theory. However,
we can say something about a1 without knowing anything about the higher
resonances.

The only dimensionful parameter in the chiral Lagrangian at leading order
is fπ ∼ 93 MeV, and the nonrenormalizable terms in Eq. (120) are suppressed
by powers of 1/fπ, suggesting that Λχ ∼ fπ. If this were indeed the case,
chiral symmetry would be completely irrelevant in the real world, since the
EFT would break down at a scale smaller than the pion mass. However, as
we will see, this is not necessarily the case - there are important factors of
4π in any estimate of the scale where the theory breaks down which save us.
The art of estimating the relevant factors of 4π goes under the name of “näıve
dimensional analysis” (NDA)20.

Consider π − π scattering at O(p4). At this order, there are contributions
from both L4, and from a loop containing two operators in L2, as shown in Fig.
15. Indeed, the operators in L4 are required as counterterms for the divergent
loop diagram in Fig. 15. Thus, the separation of the amplitude into the two
separate graphs is renormalization scheme-dependent, and therefore arbitrary.
In fact, it requires a fine-tuning to make the contribution of L4 much smaller
than that of the first diagram.

More precisely, the first graph in Fig. 15 is proportional to

∫

d4p

(2π)4
p2

f2

p2

f2

1

p4
∼ p4

16π2

1

f4
logµ (135)

where we have regulated the divergence in MS. Since the sum of the two
graphs is µ independent (the coefficients in L4 depend on µ), changing µ by
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O(1) changes the coefficients of operators in L4 by order

p4

16π2

1

f4
. (136)

Thus, even if the contribution of L4 is much smaller than this value at one
value of µ, at an equally good value of µ it is of the same order. Thus, in Eq.
(134), naturalness implies than

a1 ≥ 1

16π2
(137)

and so we have

Λχ ≤ 4πfπ ∼ 1 GeV. (138)

The theory would have to be fine-tuned if in the MS scheme, the coefficients
in L4 were significantly smaller than this estimate.

Thus, the estimate Λχ ∼ fπ is unduly pessimistic. Although the scale at
which the theory breaks down is indeed set by fπ, it may be significantly higher
(although it cannot naturally be arbitrarily high). This idea of NDA is that
this inequality is actually a rough equality - that is, hope that we are lucky
and that Λχ is no smaller than its natural size. Thus, in general we expect the
coefficients of n-derivative terms in L to be

f2
π × O(1)

Λn−2
χ

. (139)

Experimentally, this works pretty well. Many of the four-derivative terms
in the chiral Lagrangian have been fit to experiment by Gasser and Leutwyler17.
NDA tells us the natural size of these coefficients is

f2
π

Λ2
χ

=
1

16π2
∼ 7 × 10−3. (140)

Those that are measured vary between 0.4 × 10−3 and 7.4 × 10−3, so NDA
certainly seems to be in the right ballpark (which is all we can require of it).

3.4 Explicit Symmetry Breaking

Of course, chiral SU(3)×SU(3) is not an exact symmetry of QCD. It is explicitly
broken by both the quark masses,

Lm = ψ̄LMψR + h.c., (141)
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where M is the quark mass matrix,





mu 0 0
0 md 0
0 0 ms



 , (142)

and by the quark electromagnetic couplings. However, this breaking is small
(in a sense which we shall define shortly), and these corrections may be taken
into account perturbatively. Since the symmetry is not exact, the Goldstone
bosons will not be exactly massless. Such fields are known as pseudo-Goldstone
bosons (PGB’s). Since the breaking due to the s quark mass is by far the largest
of the symmetry breaking effects, let us concentrate on the quark masses. To
consistently take these effects into account, we make use of a very nice trick.
Suppose for a moment that the quark mass matrix M were actually a classical
external field (sometimes called a “spurion” field) transforming under chiral
rotations as

M → LMR†. (143)

In this case the mass term (141) would not break chiral symmetry. However,
the chiral Lagrangian would have to include all chirally invariant terms cou-
pling M and Σ, with unknown coefficients; for example

TrΣ†M + h.c. . (144)

We can recover QCD by taking M to be a constant,





mu 0 0
0 md 0
0 0 ms



 . (145)

The interactions between M and Σ then determine the effects of the quark
masses in the low-energy theory. Furthermore, sinceM is small (mu, md,ms �
Λχ), the effective theory may be expanded in powers of M , and truncated after
the first term or so. At leading order in M/Λχ there is only one term

LM =
1

2
µf2

πTrΣ†M + h.c. (146)

(note that this is not a derivative interaction, since it explicitly breaks chiral
symmetry) where µ is an unknown parameter with dimension of mass. Ex-
panding Eq. (146) in terms of the PGB’s gives

LM = −2µTrMπ̃2 + . . . (147)
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which we immediately recognize as a mass term for the PGB’s, and from which
we can read off the masses:

m2
π± = µ(mu +md)

m2
K± = µ(mu +ms)

m2
K0, K̄0 = µ(mu +md) (148)

and the π0, η mass-squared matrix is

µ

(

mu +md
mu−md√

3
mu−md√

3
1
3 (mu +md + 4ms)

)

. (149)

Ignoring the off-diagonal term, whose effects are second order in the isospin-
violating mass different mu −md, this gives

m2
π0 = µ(mu +md)

m2
η =

µ

3
(4ms +mu +md). (150)

Thus, we can relate the meson masses to the underlying quark masses. The
meson masses satisfy the Gell-Mann Okubo relation

3m2
η +m2

π = 4m2
K . (151)

Note, however, that since masses occur in the combination µm, we cannot use
this approach to determine absolute quark masses, only ratios. The electro-
magnetic contribution to the masses of the charged kaons is the same as that
for the pions, so the electromagnetic effects drop out of the following ratios

mu

md
' m2

K+ −m2
K0 + 2m2

π0 −m2
π+

m2
K0 −m2

K+ +m2
π+

' 0.55

ms

md
' m2

K0 +m2
K+ −m2

π+

m2
K0 −m2

K+ +m2
π+

' 20.1. (152)

(Note, however, that the first ratio is very sensitive to higher order corrections,
and so cannot be taken as an unambiguous sign that mu 6= 0.)

This type of analysis can be extended to other symmetry breaking terms
in L. For example, the ∆S = 1 nonleptonic operator

d̄γµ(1 − γ5)sūγµ(1 − γ5)u (153)
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(written in this form after a Fierz transformation) may be decomposed into
terms which transform (in the same sense as the mass term is said to trans-
form) as 8 and 27 dimensional representations of SU(3)L. Decomposing these
terms further in terms of isospin, the first is pure ∆I = 1/2, while the second
contains both ∆I = 1/2 and ∆I = 3/2 terms. Experimentally, ∆I = 1/2
transitions in nonleptonic K decay are much larger than ∆I = 3/2, so to a
good approximation the decay is pure octet, and for simplicity we will ignore
the 27.

The pure octet piece of the ∆S = 1 operator is

ψ̄





0 0 0
0 0 1
0 0 0



 γµ(1 − γ5)ψψ̄γµ(1 − γ5)ψ (154)

and so we can introduce the spurion field

h =





0 0 0
0 0 1
0 0 0



 (155)

which “transforms” under the chiral symmetry as h→ LhL†. At leading order
in h, there is only one term which couples h to Σ,

L∆S=1 =
1

4
f2

πλTr
[

(h+ h†)∂µΣ∂µΣ†
]

(156)

where λ is an unknown constant. However, since this is the operator responsible
for KS → ππ decays, we can measure it:

λ = 3.2 × 10−7. (157)

The EFT may now be used to calculate other weak decays mediated by the
same operator; we will see an example in the next section.

3.5 Applications

In this section I will give a couple of examples of non-trivial calculations in
chiral perturbation theory. I won’t give a completely detailed description of
all the ingredients, but I hope that they will give you a sense of the structure
of such calculations. For more details, I refer you to the original papers, cited
in the references.
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Figure 16: Diagrams contributing to KS → γγ. The box denotes the octet ∆S = 1 operator.

Ks → γγ

This process was calculated in 21. The new ingredient in this calculation is
the addition of electromagnetism, and the decay proceeds through the graphs
shown in Fig. 16. The PGB-photon vertices just arise from making the deriva-
tives in Eq. (119) covariant,

DµΣ = ∂µΣ + ieAµ [Q,Σ] (158)

where Q is the quark charge matrix (again, a spurion field)

Q =
1

3





2 0 0
0 −1 0
0 0 −1



 . (159)

Similarly, the extra photons coming off the ∆I = 1/2 operator in Eq. (156)
arise from the covariant derivatives in

L∆I=1/2 =
1

4
f2

πλTr(h+ h†)DµΣDµΣ†. (160)

The loop integrals are convergent, and there is no local operator at this order
which contributes to the decay. The result is

Br(Ks → γγ) = 2.4 × 10−6 (161)

which compares nicely with the experimental measurement of (2.4±0.9)×10−6.

η(π0) → `+`−

This process has been considered in a number of papers, most recently and
completely in 22. The extra ingredient required for this calculation is the axial
anomaly. In QCD, the axial current

jµ3 ≡ ψ̄γµγ5T
3ψ (162)
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Figure 17: Diagrams contributing to η, π0
→ `+`−.

associated with the π0 and η is not only spontaneously broken, but also explic-
itly broken by electromagnetic effects, through the famous triangle anomaly.
By calculating the triangle graph, one find that the current is not conserved,
but rather satisfies

∂µj
µ3
A =

e2

48π2
εµναβF

µνFαβ . (163)

To reproduce this in the chiral Lagrangian, an explicit symmetry breaking
term must be added to the theory with the property that under a T3 chiral
transformation this term is not invariant, but rather changes by the appropriate
factor. This is known as the Wess-Zumino term, and at leading order in the
fields, it is

LWZ =
α

4πf
εµναβF

µνFαβ

(

π0

√
2

+
η√
6

)

+ . . . (164)

and is the operator responsible for π0 → γγ and η → γγ decays. Note that
there are no unknown parameters in this term; its coefficient is fixed by re-
quiring that it reproduce the anomaly in the full theory.

The Wess-Zumino term contributes to the decay η → µ+µ− via the first
graph in Fig. 17. The loop graph is UV divergent, so it clearly needs a coun-
terterm, which gives the second diagram. Alternatively, one can just notice
that one has to include any local operator with the correct quantum numbers
at the same order in the chiral expansion. It turns out that there are two such
operators,

Lc.t. =
3iα2

32π2
`γµγ5`

[

χ1Tr(Q
2Σ†∂µΣ −Q2∂µΣ†Σ)

+χ2Tr(QΣ†Q∂µΣ −Q∂µΣ†QΣ)
]

(165)

where χ1 and χ2 are unknown coefficients. Note that since the decay occurs
via two photons, the counterterm has two powers of Q. Using the measured
branching ratio

Br(η → µ+µ−) = 5.8 ± 0.8 × 10−6 (166)
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Figure 18: Leading SU(3) breaking corrections to fK/fπ . The box indicates an insertion of
the weak current; the leptons are omitted.

allows us to fit the sum of these unknown coefficients,

−40 < χ1(µ = 1 GeV) + χ2(µ = 1 GeV) < −13. (167)

(Note that this is consistent with the NDA expectation 3χ1/32 ∼ 1.) This
now gives us predictions for η → e+e− and π0 → e+e−, which depend on the
same linear combination of counterterms. Note that this is not a simple SU(3)-
like prediction; the loop integrals are weighted in different parts of momentum
space. The predictions are

Br(π0 → e+e−) = 7 ± 1 × 10−8 (exp’t: 7.5 ± .2 × 10−8)

Br(η → e+e−) = 5 ± 1 × 10−9 (exp’t: < 2 × 10−4). (168)

3.6 Other Applications

I hope I have given you a flavour of the applications of chiral perturbation
theory here. Let me just mention a few more of the applications.

Chiral Logarithms: SU(3) breaking effects from local operators give terms
proportional to mq, or m2

π,K,η. Since they are local operators, these must be
analytic in mq. Contributions which are nonanalytic in the mesons masses, for
example ∼ m2

π logm2
π, can only arise from loop integrals, which are sensitive

to infrared effects. Thus, in the chiral limit mq → 0, these terms formally
dominate over the nonanalytic terms. Furthermore, they are calculable. Of
course, since logm2

π/Λ
2
χ ∼ −3.9 and logm2

K/Λ
2
χ ∼ −1.4, these terms are not

greatly enhanced. Nonetheless, one often calculates these terms to at least set
a lower limit on the size of SU(3) breaking effects. One oft-cited example is
the ratio of decay constants fK/fπ. At one loop, this is determined by the
graphs in Fig. 18, which yield (ignoring the pion mass)

fK

fπ
= 1 − 3m2

K

64π2f2
π

logm2
K/Λ

2
χ +O(m2

K)

= 1.19. (169)
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This is rather close (probably too close to be other than luck) to the experi-
mental value of 1.2.

Matter Fields: It is problematic to introduce heavy particles (vector mesons,
nucleons, heavy hadrons) into chiral perturbation theory in the standard way,
since their masses of order, or greater than, Λχ. However, for massive sta-
ble particles, this energy cannot be released, and using techniques similar to
HQET they can be introduced as static chirally coupled fields in an SU(3)
invariant manner. This gives an effective field theory describing low energy
πp, πD, etc., interactions. There are a number of uses of such a theory, such
as nucleon-pion scattering near threshold, D∗ → Dπ and D∗ → Dγ decays,
nonanalytic SU(3) breaking in heavy particle masses and couplings, and decays
of excited heavy states such as D∗2 → Dπ. For some examples, see 23.

Nuclear Forces: There has recently been a great deal of excitement about
the possibility of studying nuclear forces (that is, nucleon-nucleon scatter-
ing and beyond) using a chiral Lagrangian. This would provide a model-
independent approach to many classic nuclear physics problems, such as the
internucleon potential, properties of the deuteron, and properties of bulk nu-
clear matter. Until quite recently the major stumbling block was coming up
with a consistent power counting scheme, which is significantly more diffi-
cult than in the case of the standard chiral Lagrangian, due to the apparent
fine-tuning in nature of the NN phase shift and deuteron binding energies.
Recently, this problem seems to have been dealt with consistently, and there
has been much activity in this field 24.

Electroweak Symmetry Breaking: Finally, we recall that the chiral La-
grangian approach was based solely on the symmetries, and so the same ap-
proach is appropriate to study any theory exhibiting chiral symmetry breaking.
In particular, the Standard Model has the symmetry-breaking pattern

SU(2)EW × SU(2)R → SU(2)custodial (170)

where the SU(2)R is a global symmetry with a gauged U(1), and the remaining
“custodial” SU(2) guarantees that the ρ parameter is near one. Thus, one can
use chiral perturbation theory techniques to describe the low-energy effective
theory of the symmetry-breaking sector. This is particularly useful in strongly-
coupled theories with dynamical symmetry breaking, such as technicolour and
its generalizations. The leading terms in the chiral Lagrangian reproduce the
tree-level results of the Standard Model, while deviations from the SM arise
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from higher dimension operators. Näıve dimensional analysis also provides
a useful means of estimating the effects of a strongly interacting symmetry
breaking sector 25.
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